CALIBER White blood cell counts phenotype

person Phenotype White blood cell counts
person Type Biomarker
person Data sources Primary care (CPRD)
person Clinical Terminologies Read
person Valid event date range 01/01/1999 - 01/07/2016
person Sex Female/Male
person Agreed 23.11.2012 (Revision 2)
person Authors Shah AD, Denaxas S, Nicholas O, Hingorani A, Hemingway H

Primary Care

In the Clinical Practice Research Datalink (CPRD, primary care data) we extracted white blood cell measurements using the structured data component of the test CPRD table (entity type 207) combined with a list of Read terms (see below). The value was extracted from the data2 field where the units data3 field were set as 37 [10*9/L], 153 [10*9], 17 [/L]. We filtered any values less than 50 10^9/L.

Read codeRead termCALIBER category
42H..00 Total white cell count Total blood white cell count
42H..11 White blood count Total blood white cell count
42H..12 White cell count Total blood white cell count
42H1.00 White cell count normal Total blood white cell count
42H2.00 Leucopenia - low white count Total blood white cell count
42H2.11 Leucopenia Total blood white cell count
42H3.00 Leucocytosis -high white count Total blood white cell count
42H3.11 Leucocytosis Total blood white cell count
42H5.00 White cell count abnormal Total blood white cell count
42H7.00 Total white blood count Total blood white cell count
42H8.00 Total WBC (IMM) Total blood white cell count
42HZ.00 Total white cell count NOS Total blood white cell count
D400A00 Leucopenia Total blood white cell count
D40y.11 Leucocytosis Total blood white cell count
D40y.12 Leukocytosis Total blood white cell count
D40yz11 Leucocytosis Total blood white cell count
Read terms are hierarhically organized in top-level chapters i.e. chapter G....00 is related to Circulatory System Diseases and sub-headings i.e. heading G2...00 is related to Hypertensive Heart Disease while G3...00 is related to Ischaemic Heart Disease.
Not applicable.
Not applicable.

Classification of patient state as 'acute' or 'stable' on date of blood test

Total white cell counts can be affected by many factors such as infections, autoimmune diseases, medication and haematological conditions. Similar to our recent study on eosinophil counts,1 we sought to differentiate between a patient’s long-term ‘stable’ total white cell count and results obtained when the patient had an ‘acute’ condition which may alter leukocyte counts. We used other information in the electronic health record (prescriptions, diagnoses, symptoms, hospitalisations) to assess whether the patient was clinically ‘acute’ or ‘stable’ at the time of the blood test, adapting a set of criteria proposed by the eMERGE consortium (electronic Medical Records and Genomics)2 for studying genetic determinants of the stable leukocyte counts: in hospital on the date of blood test, vaccination in the previous 7 days, anaemia diagnosis within the previous 30 days, symptoms or diagnosis of infection within the previous 30 days, prior diagnosis of myelodysplastic syndrome, prior diagnosis of haemoglobinopathy, cancer chemotherapy or G-CSF within 6 months before index date, the use of drugs affecting the immune system such as methotrexate or steroids within the previous 3 months, prior diagnosis of HIV infection, prior splenectomy or prior dialysis.


Shah AD et al. Low eosinophil and low lymphocyte counts and the incidence of 12 cardiovascular diseases: a CALIBER cohort study. Open Heart. 2016 Sep 5;3(2):e000477. doi: 10.1136/openhrt-2016-000477. eCollection 2016. PMID: 27621833


Gho JMIH et al. An electronic health records cohort study on heart failure following myocardial infarction in England: incidence and predictors. BMJ Open. 2018 Mar 3;8(3):e018331. doi: 10.1136/bmjopen-2017-018331. PMID: 29502083


Steele AJ et al. Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease. PLoS One. 2018 Aug 31;13(8):e0202344. doi: 10.1371/journal.pone.0202344. eCollection 2018. PMID: 30169498


Archangelidi O et al. Clinically recorded heart rate and incidence of 12 coronary, cardiac, cerebrovascular and peripheral arterial diseases in 233,970 men and women: A linked electronic health record study. Eur J Prev Cardiol. 2018 Sep;25(14):1485-1495. doi: 10.1177/2047487318785228. Epub 2018 Jul 2. PMID: 29966429


Koudstaal S et al. Prognostic burden of heart failure recorded in primary care, acute hospital admissions, or both: a population-based linked electronic health record cohort study in 2.1 million people. Eur J Heart Fail. 2017 Sep;19(9):1119-1127. doi: 10.1002/ejhf.709. Epub 2016 Dec 23. PMID: 28008698


Chung SC et al. Time spent at blood pressure target and the risk of death and cardiovascular diseases. PLoS One. 2018 Sep 5;13(9):e0202359. doi: 10.1371/journal.pone.0202359. eCollection 2018. PMID: 30183734


Bell S et al. Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: population based cohort study using linked health records. BMJ. 2017 Mar 22;356:j909. PMID: 28331015


Pasea L et al. Personalising the decision for prolonged dual antiplatelet therapy: development, validation and potential impact of prognostic models for cardiovascular events and bleeding in myocardial infarction survivors. Eur Heart J. 2017 Apr 7;38(14):1048-1055. doi: 10.1093/eurheartj/ehw683. PMID: 28329300


Shah AD et al. Neutrophil Counts and Initial Presentation of 12 Cardiovascular Diseases: A CALIBER Cohort Study. J Am Coll Cardiol. 2017 Mar 7;69(9):1160-1169. doi: 10.1016/j.jacc.2016.12.022. PMID: 28254179


Asaria M et al. Using electronic health records to predict costs and outcomes in stable coronary artery disease. Heart. 2016 May 15;102(10):755-62. doi: 10.1136/heartjnl-2015-308850. Epub 2016 Feb 10. PMID: 26864674


Daskalopoulou M et al. Depression as a Risk Factor for the Initial Presentation of Twelve Cardiac, Cerebrovascular, and Peripheral Arterial Diseases: Data Linkage Study of 1.9 Million Women and Men. PLoS One. 2016 Apr 22;11(4):e0153838. doi: 10.1371/journal.pone.0153838. eCollection 2016. PMID: 27105076


Pujades-Rodriguez M et al. Associations between polymyalgia rheumatica and giant cell arteritis and 12 cardiovascular diseases. Heart. 2016 Mar;102(5):383-9. doi: 10.1136/heartjnl-2015-308514. Epub 2016 Jan 19. PMID: 26786818


Pujades-Rodriguez M et al. Rheumatoid Arthritis and Incidence of Twelve Initial Presentations of Cardiovascular Disease: A Population Record-Linkage Cohort Study in England. PLoS One. 2016 Mar 15;11(3):e0151245. doi: 10.1371/journal.pone.0151245. eCollection 2016. PMID: 26978266

Timmis A et al. Prolonged dual antiplatelet therapy in stable coronary disease: comparative observational study of benefits and harms in unselected versus trial populations. BMJ. 2016 Jun 22;353:i3163. PMID: 27334486


Walker S et al. Long-term healthcare use and costs in patients with stable coronary artery disease: a population-based cohort using linked health records (CALIBER). Eur Heart J Qual Care Clin Outcomes. 2016 Jan 20;2(2):125-140. doi: 10.1093/ehjqcco/qcw003. PMID: 27042338


George J et al. How Does Cardiovascular Disease First Present in Women and Men? Incidence of 12 Cardiovascular Diseases in a Contemporary Cohort of 1,937,360 People. Circulation. 2015 Oct 6;132(14):1320-8. doi: 10.1161/CIRCULATIONAHA.114.013797. Epub 2015 Sep 1. PMID: 26330414


Morley KI et al. Defining disease phenotypes using national linked electronic health records: a case study of atrial fibrillation. PLoS One. 2014 Nov 4;9(11):e110900. doi: 10.1371/journal.pone.0110900. eCollection 2014. PMID: 25369203


Pujades-Rodriguez M et al. Heterogeneous associations between smoking and a wide range of initial presentations of cardiovascular disease in 1937360 people in England: lifetime risks and implications for risk prediction. Int J Epidemiol. 2015 Feb;44(1):129-41. doi: 10.1093/ije/dyu218. Epub 2014 Nov 20. PMID: 25416721


Pujades-Rodriguez M et al. Socioeconomic deprivation and the incidence of 12 cardiovascular diseases in 1.9 million women and men: implications for risk prediction and prevention. PLoS One. 2014 Aug 21;9(8):e104671. doi: 10.1371/journal.pone.0104671. eCollection 2014. PMID: 25144739


Rapsomaniki E et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet. 2014 May 31;383(9932):1899-911. doi: 10.1016/S0140-6736(14)60685-1. PMID: 24881994


Shah AD et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol. 2015 Feb;3(2):105-13. doi: 10.1016/S2213-8587(14)70219-0. Epub 2014 Nov 11. PMID: 25466521


Rapsomaniki E et al. Prognostic models for stable coronary artery disease based on electronic health record cohort of 102 023 patients. Eur Heart J. 2014 Apr;35(13):844-52. doi: 10.1093/eurheartj/eht533. Epub 2013 Dec 17. PMID: 24353280